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Abstract The relationship between the topochemical
indices and cyclin-dependent kinase 2 (CDK2) inhibi-
tory activity of indole-2-ones has been investigated. The
relationship of topochemical versions of well known
topological indices of Wiener’s index—a distance-based
topological descriptor, molecular connectivity index, an
adjacency-based topological descriptor and eccentric
connectivity index—an adjacency-cum-distance based
topological descriptor with CDK2 inhibitory activity of
indole-2-ones has been investigated. A data set com-
prising 67 analogues of substituted indole-2-ones was
selected for the present investigation. The values of the
Wiener’s topochemical index, molecular connectivity to-
pochemical index and eccentric connectivity topochemical
index for each of 67 analogues comprising the data set
were computed. The resulting data was analyzed and
suitable models developed after identification of the
active ranges. Subsequently, a biological activity was
assigned to each analogue in the data set using these
models, which was then compared with the reported
CDK2 inhibitory activity. Accuracy of prediction was
found to vary from a minimum of 88% for a model
based upon molecular connectivity topochemical index to
a maximum of �90% for model based upon eccentric
connectivity topochemical index.

Keywords Topochemical indices Æ Wiener’s
topochemical index Æ Molecular connectivity
topochemical index Æ Atomic molecular connectivity
index Æ Eccentric connectivity topochemical index Æ
CDK2 inhibitory activity Æ Indole-2-ones

Introduction

The design of drug molecules possessing desired physi-
cal, chemical and biological properties is a challenging
problem in the pharmaceutical industry. Structure-
activity-relationships (SARs) are models that attempt to
relate certain structural aspects of molecules to their
physicochemical/biological/toxicological properties [1].
The ideal goal of SAR research is to predict the behavior
of chemical species from a minimal set of input data [2].
In recent years, nonempirical graph theoretical param-
eters have been used in SAR studies for predicting
chemical behavior [1, 3–8]. These graph invariants are
usually a single number or a vector, which can be used to
characterize and order molecules and predict properties
[9]. A graph invariant is a graph theoretical property
that has the same value for isomorphic graphs [10]. A
single real-number graph invariant characterizing a
molecular graph is usually called a topological index
(TI). A graph G = (V, E) is an ordered pair of two sets
V and E, the former representing a nonempty set and
latter representing unordered pair of elements of set V.
When V represents the atoms of a molecule and element
of E symbolize covalent bonds between pairs of atoms,
then G becomes a molecular graph (or constitutional
graph) [11]. Topological indices are generally derived
from graph by which the structural formula of a mole-
cule can be represented. Numerical indices derived from
the molecular graphs are usually called topological
indices (topostructural and topochemical) [12]. Topo-
structural descriptors quantify information strictly
about the adjacency and topological distance between
atoms within a molecular structure, while topochemical
descriptors encode information about molecular topol-
ogy and information about the chemical nature of the
atoms and bonds within a molecule.

Although a number of topological indices have been
reported in the literature, only a handful of them have
been employed successfully in SAR studies. Hosoya’s
index [12, 13] Randic’s molecular connectivity index (X)
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[3, 14] the higher-order connectivity indices (n X) for the
paths of length n and defined by Kier and Hall [7] the
hydrogen E-state index [15, 16] Balaban’s index (J) [17–
20] Wiener’s index [21–23] Zagreb group parameters, M1

and M2 [24, 25] eccentric connectivity index [26–32] are
some of the topological indices frequently employed in
the SARs studies.

The importance of cyclin-dependent kinases (CDKs)
to the process of cell division has stimulated the interest
for the development of potential targets for proliferative
diseases such as cancer, psoriasis and restenosis [33–35]
and for the prevention of chemotherapy-associated side
effects such as alopecia [36]. The CDKs are serine/thre-
onine protein kinases that become active when they
associate with their respective cyclin subunits. Cyclins
are so called because of their characteristic pattern of
appearance and disappearance during the cell division
cell cycle [37]. The CDKs consist of a catalytic subunit
(CDK1-CDK8) and a regulatory subunit (cyclin
A—cyclin H). These proteins are regulated in several
ways: subunit production, complex formation, (de)
phosphorylation, cellular localization and interaction
with various natural protein inhibitors [38]. More re-
cently, however, it has become clear that CDKs are in-
volved in many other cellular processes, including
regulation of transcription, differentiation, cell death,
neuronal functions and neurodegeneration, transcrip-
tion and exocytosis [39–43].

The G1 is the phase of the cell cycle wherein the cell is
responsive to growth factor-dependent signals. As such,
G1 regulation is frequently disrupted in cancer through
deregulation of cyclin/CDK activity. Deregulation of
the G1 phase provides tumorigenic cells with a growth
advantage. Cyclin E, the regulatory cyclin for CDK2, is
considered a requisite regulator of G1 progression. Cy-
clin E is overexpressed in cancer, suggesting that cyclin
E/CDK2 deregulation contributes to tumorigenesis [44].
The CDK2 activity is required for progression through
G1 to the S phase of the cell cycle, and CDK2 is one of
the key components of the G1 checkpoint. Checkpoints
serve to maintain the proper sequence of cell cycle events
and allow the cell to respond to insults or to proliferative
signals, while the loss of proper checkpoint control in
cancer cells contributes to tumorigenesis [45, 46]. In
preclinical studies, CDK inhibitors have shown the
ability not only to block neoplastic cell proliferation, but
also to induce, through a variety of mechanisms, pro-
grammed cell death. The latter capacity may stem from
the diverse effects that CDK inhibitors exert on multiple
kinases and apoptotic regulatory molecules. In addition,
there is abundant preclinical evidence that CDK inhib-
itors can potentiate, generally in a dose-dependent and
sequence-dependent manner, the anti-tumor effects of
many established cytotoxic agents [47]. These observa-
tions make CDK2 and its regulatory pathways com-
pelling targets for the development of novel
chemotherapeutic agents.

Inhibition of CDKs as regulating enzymes within the
cell cycle resulted in antiproliferative effects and made

them an interesting target for the development of novel
small-sized cytostatics for combined cytostatic therapies
[48–50]. Flavopiridol is the first CDK inhibitor, the most
important explored targets in cancer therapy, is pres-
ently undergoing phase II clinical trials [51, 52]. The
present CDK inhibitors are either nonselective or show
inhibition profiles toward various CDK subtypes such as
CDK1, �2, and �5 and CDK4 and �6 [53]. Despite
intense efforts, no specific CDK inhibitor has been dis-
covered so far [52].

In the present study, the relationship of Wiener’s to-
pochemical index—a distance-based topochemical
descriptor, molecular connectivity topochemical index- an
adjacency-based topochemical descriptor and eccentric
connectivity topochemical index—an adjacency-cum-dis-
tance based topochemical descriptor with CDK2 inhib-
itory activity of indole-2-ones has been investigated.

Methodology

Calculations of topological indices

Wiener’s topochemical index (Wc): is a modified form of
oldest and most widely used distance based TI— Wie-
ner’s index [21–23] and this modified index takes into
consideration the presence as well as relative position of
heteroatoms in a molecular structure. Various modifi-
cations of Wiener’s index has been reported which in-
cludes hyper-Wiener’s index [54], new hyper-Wiener
index [55] and Wiener’s topochemical index [56]. To
overcome the problem of degeneracy Wc is used. This is
defined as the sum of the chemical distances between all
the pairs of vertices in hydrogen suppressed molecular
graph, i.e.

Wc ¼
1

2

Xn

I¼1

Xn

j¼1
Picjc ð1Þ

where Picjc is the chemical length of the path that con-
tains the least number of edges between vertex i and j in
the graph G, n is the maximum possible number of i and
j.

Molecular connectivity topochemical index (XA): is a
modified form of one of the most widely used adjacency
based TI— molecular connectivity index [3, 14] and it
takes into consideration the presence as well as relative
position of heteroatom(s) in a molecular structure. The
molecular connectivity topochemical index is reported in
the literature as atomic molecular connectivity index [57].
The authors now feel that atomic molecular connectivity
index should be renamed as molecular connectivity
topochemical index on similar grounds as those of Wc

[56], Zagreb topochemical index (M1
c) [58], and Eccentric

connectivity topochemical index (nc
c) [59] for the sake of

simplicity and to avoid any kind of confusion.
The molecular connectivity topochemical index or

atomic molecular connectivity index is denoted by XA

and is expressed as
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vA ¼
Xn

i¼1
V c

i V c
j

� ��1=2
ð2Þ

where, n is the number of vertices, V c
i and V c

j are the
modified degrees of adjacent vertices i and j forming the
edge i, j in a graph G. The modified degree of a vertex
can be obtained from the adjacency matrix by substi-
tuting row element corresponding to heteroatom, with
relative atomic weight with respect to carbon atom [57].

Eccentric connectivity topochemical index: is denoted
by nc

c and is defined as the summation of the product of
chemical eccentricity and the chemical degree of each
vertex in the hydrogen suppressed molecular graph
having n vertices, that is

ncc ¼
Xn

i¼1
Eic � Vicð Þ ð3Þ

Where Vicis the chemical degree of vertex i, Eic the
chemical eccentricity of the vertex i and n is the number
of the vertices in graph G [59]. Eccentric connectivity
topochemical index is a modified form of an adjacency-
cum-distance based TI—eccentric connectivity index [26–
32] and this modified index takes into consideration the
presence as well as relative position of heteroatom (s) in
a molecular structure.

Model development

A data set [60] comprising 67 indole-2-ones based upon
the basic structure depicted in Fig. 1 was selected for the
present investigations. The data set comprised both ac-
tive and inactive compounds. The values of the Wc were
computed for each analogue in the data set using an in-
house computer program. For the selection and evalu-
ation of range-specific features, exclusive activity ranges
were discovered from the frequency distribution of

response level and subsequently identifying the active
range by analyzing the resultant data by maximization
of the moving average with respect to the active com-
pounds (<35% = inactive, 35–65% = transitional,
‡65% = active) [61]. Subsequently, each analogue was
assigned a biological activity, which was then compared
with the reported CDK2 inhibitory activity. The CDK2
inhibitory activity was reported quantitatively as IC50 at
different concentrations. The analogues possessing IC50

values of <5 nM were considered to be active and
analogues possessing an IC50 values of ‡ 5 nM were
considered to be inactive for the purposes of the present
study.

The percentage degree of prediction of a particular
range was derived from the ratio of the number of
compounds predicted correctly to the total number
of compounds present in that range. The overall degree
of prediction was derived from the ratio of the total
number of compounds correctly to that of the total
number of compounds present in both the active and
inactive ranges.

The aforementioned procedure was followed for XA

and nc
c . The results are summarized in Tables 1 and 2.

Results and discussion

Efficient discovery and creation of novel drug molecules
depend on the ability to explore and quantify the rela-
tionships between molecular structure and func-
tion—particularly the biological activity. The problem
in the development of a suitable correlation between
chemical structures and properties can be attributed to
the nonquantitative nature of chemical structures.
Graph theory was successfully employed through the
translation of chemical structures into characteristic
numerical descriptors by resorting to graph invariants
[62, 63]. Topological descriptors are such numerical
graph invariants, which quantify the chemical structures
so as to facilitate the development of suitable correla-
tions with quantified biological activities.

The importance of CDKs in cell-cycle regulation,
their interaction with oncogenes and tumor suppressors,
and their frequent deregulation in human tumors, has
encouraged an active search for agents capable of per-
turbing the function of CDKs [64]. The potential use of
these inhibitors is being extensively evaluated not only
for cancer chemotherapy but also in restenosis, psoria-
sis, tumoral angiogenesis, atherosclerosis, glomerulone-
phritis, Alzheimer’s disease and viral infections.

In the present investigations, the Wc—a distance-
based topochemical descriptor,XA—an adjacency-based
topochemical descriptor and ncc—an adjacency-
cum-distance based topochemical descriptor has been
employed to study relationship with CDK2 inhibitory
activity of indole-2-one derivatives. The selected data set
comprising of 67 analogues included both the active and
inactive compounds.

SO 2NH2

X

N
H

NH

O

R6

R7

R4

R5

Fig. 1 Basic structure of indole-2-ones
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Table 1 Relationship of Wiener’s topochemical index, molecular connectivity topochemical index and eccentric connectivity topo-
chemical index with CDK2 inhibitory activity

CPD.
No.

R4 R5 R6 R7 X Wc vA nc
c CDK2 inhibitory

activity

Predicted Reported

Wc vA nc
c

1. H Br H H N 1543.280 9.105 912.514 – – – –
2. H H H H N 1326.768 9.285 635.262 – – – –
3. H H H H CH 1306.645 9.347 623.461 – – – –
4. H H H H CCH3 1415.899 9.758 642.794 – – – –
5. H Cl H H N 1502.481 9.369 745.441 – – – –
6. H Cl H H CCH3 1596.670 9.843 752.041 – – – –
7. H 5-Oxazolyl H H N 2258.969 11.552 902.570 ± ± + +
8. H 5-Oxazolyl H H CH 2229.243 11.614 888.179 ± ± + +
9. H 5-Oxazolyl H H CCH3 2375.081 12.025 907.513 ± ± + +
10. I H H H N 1570.356 9.021 1071.156 – – – +
11. �CH2CH3 H H H N 1626.118 10.234 688.598 – – – –
12. �CH(CH3)2 H H H N 1789.293 10.606 716.266 – + – +
13. �CH2CH(CH3)2 H H H N 1998.468 11.090 776.602 + + ± +
14. �CH=C(CH3)2 H H H N 1998.468 11.090 776.602 + + ± +
15. �OCH2CH3 H H H N 1829.941 10.585 766.471 – – – –
16. �OCH(CH3)2 H H H N 2022.855 10.980 794.912 + – ± +
17. �OPh H H H N 2714.611 12.630 990.727 ± – – –
18. �(CH2)2–(�4-pyridyl) H H H N 2982.755 13.173 1050.581 � � � �
19. –CH=CH–(4-phenol) H H H N 3281.337 13.574 1127.045 � � � �
20. –(CH2)2–(�4-phenol) H H H N 3281.337 13.574 1127.045 � � � �
21. 3-pyrazolyl H H H N 2172.993 11.625 854.617 ± ± ± –
22. –CO2CH2CH3 H H H CH 2186.559 11.491 846.609 ± ± ± –
23. –CH2OH H H H CH 1605.983 10.213 690.060 – – – –
24. –NO2 H H H N 1806.804 10.359 746.718 – – – –
25. –CO2NH2 H H H N 1795.293 10.496 732.480 – – – –
26. H F H H N 1487.356 9.560 687.417 – – – –
27. H I H H N 1586.356 8.966 1131.077 – – – –
28. H –CH3 H H N 1480.943 9.679 662.930 – – – –
29. H –OH H H N 1484.606 9.607 676.917 – – – –
30. H –OCH3 H H N 1669.274 10.059 740.803 – – – –
31. H –NO2 H H N 1854.804 10.340 782.553 – – ± –
32. H –NH2 H H N 1482.780 9.642 669.945 – – – –
33. H –N(CH3)2 H H CH 1820.927 10.535 750.573 – – – –
34. H –SO2CH3 H H N 2162.654 10.004 962.264 ± – – –
35. H –SO2NH2 H H N 2164.741 9.986 964.658 ± – – –
36. H –SO3H H H N 2166.816 9.968 967.038 ± – – –
37. H –CO2H H H CH 1819.400 10.510 757.112 – – – –
38. H –CO2CH3 H H CH 2029.979 10.969 823.608 + + ± +
39. H –CO2CH2CH(CH3)2 H H CH 2795.718 12.352 991.303 ± ± – +
40. H –COCH2CH(CH3)2 H H CH 2476.666 11.978 900.186 ± ± + +
41. H –CONH2 H H N 1843.293 10.479 767.648 – – ± +
42. H –CON(CH3)2 H H N 2262.326 11.322 861.642 ± ± ± –
43. H –CONH(CH2)2-

(1H-imidazol-4-yl)
H H N 3780.344 13.866 1240.654 – – – –

44. H –CONH(CH2)3-
(1H-imidazol-4-yl)

H H N 4202.139 14.331 1341.266 – – – –

45. H –CONHCH2-(4-pyridyl) H H N 3722.080 13.933 1228.584 – – – –
46. H –CONHCH2-(3-pyridyl) H H N 3722.080 13.937 1223.073 – – – +
47. H –CONHCH2C

(CH3)2CH2OH
H H N 3376.886 13.125 1118.704 – – – –

48. H –CONHCH2-
(2,6-dimethoxyphenyl)

H H N 5045.354 15.602 1411.692 – – – +

49. H H Br H N 1555.614 9.105 954.238 – – – –
50. H H –CH2CH3 H N 1682.786 10.217 754.296 – – – –
51. H H –CH(CH3)2 H N 1874.295 10.590 785.964 – – ± –
52. H H –C(CH3)3 H N 2067.804 10.890 817.632 ± + ± –
53. H H –CH2OH H CH 1662.651 10.196 756.727 – – – –
54. H H –OPh H N 2912.949 12.609 1088.256 – – – –
55. H H H –CH3 CH 1455.233 9.760 650.794 – – – –
56. H –CH3 H –CH3 CH 1611.487 10.154 678.128 – – – –
57. H Cl H –CH3 CH 1634.004 9.844 760.041 – – – –
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Retrofit analysis of the data in Tables 1 and 2 reveals
the following information with regard to models based
upon Wc:

– A total of 48 out of 54 compounds were classified
correctly in both the active and inactive ranges. The
overall accuracy of prediction was found to be
88.89% with regard to CDK2 inhibitory activity.

– The active range hadWc values of 1940.251–2029.979.
All the analogues in the active range exhibited CDK2
inhibitory activity.

– Two inactive ranges—a lower inactive range with in-
dex values of <1940.251 and an upper inactive range
with index values of >2795.718 were observed. Ac-
tivity of 40 out of 46 compounds in these inactive
ranges was predicted correctly.

– A transitional range with Wc values varying from
>2029.979 to 2795.718 was observed indicating a
gradual transition from active to upper inactive range
and vice versa.

– The average IC50 value of correctly predicted com-
pounds in the active range was found to be only

2.26 nM. This clearly indicates high potency of the
active range.

Retrofit analysis of the data in Tables 1 and 2 reveals
the following information with regard to model based
upon XA :

– A total of 52 out of 59 compounds were classified
correctly in both the active and inactive ranges using
model based upon XA . The overall accuracy of pre-
diction was found to be 88.13% with regard to CDK2
inhibitory activity.

– The active range had XA values of 10.606–12.260.
Nine out of 11 analogues in the active range exhibited
to CDK2 inhibitory activity.

– A transitional range with XA values varying from
>11.260 to 12.352 was observed indicating a gradual
transition from active to upper inactive range and vice
versa.

– The average IC50 value was found to be 2.28 nM for
correctly predicted compounds in the active range.
This clearly indicates high potency of the active range.

Table 1 (Contd.)

CPD.
No.

R4 R5 R6 R7 X Wc vA nc
c CDK2 inhibitory activity

Predicted Reported

Wc vA nc
c

58. Cl –CH3 H H N 1644.635 9.830 740.212 – – – –
59. Cl –OCH3 H H N 1838.444 10.218 790.621 – – ± –
60. �CH3 –NO2 H H N 2004.730 10.770 808.221 + + ± +
61. –CH=N–NH– H H N 1784.969 10.629 758.963 – + – –
62. �C(Cl)=N-NH- H H N 1975.953 10.772 864.354 + + + +
63. –N=N–NH– H H N 1790.146 10.567 768.594 – – ± –
64. –S–CH=N– H H N 1824.975 10.248 831.940 – – ± –
65. –S–CH=N– H H CH 1799.090 10.310 818.190 – – ± +
66. –CH=CH–CH=N– H H N 1954.696 11.230 802.906 + + ± +
67. –CH=CH–CH=N– H H CH 1940.251 11.260 795.530 + + ± +

+Active compound;�Inactive compound;
±Compound in the transitional range where activity could not be specifically assigned;

Table 2 Proposed models for the prediction of CDK2 inhibitory activity

Index Nature of range
in the proposed
model

Index value Number of
analogues
in the range

Number of
analogues
predicted
correctly

Percent
accuracy

Average IC50*(nM)

Wc Lower inactive <1940.251 36 32 88.89 991.69(1115.20)
Active 1940.251–2029.979 8 8 100.00 2.26
Transitional >2029.979–2795.718 13 NA NA NA
Upper inactive >2795.718 10 8 80.0 1009.88(1261.87)

XA Lower inactive <10.606 37 34 91.89 966.47(1051.39)
Active 10.606–11.260 11 9 81.81 912.14(2.28)
Transitional >11.260–12.352 8 NA NA NA
Upper inactive >12.352 11 9 81.81 919.25(1123.11)

nc
c Lower inactive <767.648 25 24 96.00 1416.57(1475.49)

Transitional 767.648–<864.354 18 NA NA NA
Active 864.354–907.513 5 5 100.00 2.18
Upper inactive >907.513 19 15 78.94 542.49(686.40)

*Values in the bracket indicate average IC50 values of correctly predicted analogues of the particular range
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– Two inactive ranges—a lower inactive range with in-
dex values of <10.606 and an upper inactive range
with index values of >12.352 were observed. Activity
of 43 out of 48 compounds in these inactive ranges
was predicted correctly.

Retrofit analysis of the data in Tables 1 and 2 reveals
the following information with regard to ncc:

– A total of 44 out of 49 compounds were classified
correctly in both the active and inactive ranges. The
overall accuracy of prediction was found to be
89.79% with regard to CDK2 inhibitory activity.

– The active range had ncc values of 864.354–907.513.
All five analogues in the active range exhibited CDK2
inhibitory activity.

– A transitional range with ncc values varying from
767.648 to <864.354 was observed indicating a gra-
dual transition from active to lower inactive range and
vice versa.

– The average IC50 value was found to be 2.18 nM for
correctly predicted compounds in the active range.
This clearly indicates high potency of the active range.

– Two inactive ranges—a lower inactive range with in-
dex values of <767.648 and an upper inactive range
with index values of >907.513 were observed. Activ-
ity of 39 out of 44 compounds in these inactive ranges
was predicted correctly.

Conclusion

Investigations reveal significant correlations of all the
three-topochemical indices with CDK2 inhibitory
activity of indole-2-one derivatives. The overall accuracy
of prediction varied from minimum of 88% for model
based on vA to a maximum of �90% for model based on
nc

c. High predictability of the proposed models based
upon the topochemical indices offer a vast potential for
providing lead structures for the development of potent
CDK2 inhibitory agents.
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